3.2.74 \(\int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx\) [174]

3.2.74.1 Optimal result
3.2.74.2 Mathematica [B] (verified)
3.2.74.3 Rubi [A] (verified)
3.2.74.4 Maple [B] (verified)
3.2.74.5 Fricas [B] (verification not implemented)
3.2.74.6 Sympy [F(-1)]
3.2.74.7 Maxima [F(-1)]
3.2.74.8 Giac [F(-2)]
3.2.74.9 Mupad [F(-1)]

3.2.74.1 Optimal result

Integrand size = 38, antiderivative size = 185 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {(4+4 i) a^{5/2} (A-i B) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 (8 i A+5 B) \sqrt {a+i a \tan (c+d x)}}{15 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {2 a^2 (38 A-35 i B) \sqrt {a+i a \tan (c+d x)}}{15 d \sqrt {\tan (c+d x)}}-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)} \]

output
(-4-4*I)*a^(5/2)*(A-I*B)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan 
(d*x+c))^(1/2))/d+2/15*a^2*(38*A-35*I*B)*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d* 
x+c)^(1/2)-2/15*a^2*(8*I*A+5*B)*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(3/2 
)-2/5*a*A*(a+I*a*tan(d*x+c))^(3/2)/d/tan(d*x+c)^(5/2)
 
3.2.74.2 Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(447\) vs. \(2(185)=370\).

Time = 7.69 (sec) , antiderivative size = 447, normalized size of antiderivative = 2.42 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=-\frac {2 A (a+i a \tan (c+d x))^{5/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}+(i A+B) \left (\frac {4 i \sqrt {2} a^2 \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {4 i a^{5/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {1+i \tan (c+d x)} \sqrt {i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {5 (-1)^{3/4} a^2 \text {arcsinh}\left (\sqrt [4]{-1} \sqrt {\tan (c+d x)}\right ) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {1+i \tan (c+d x)}}-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {14 i a^2 \sqrt {a+i a \tan (c+d x)}}{3 d \sqrt {\tan (c+d x)}}-\frac {i a^{3/2} \text {arcsinh}\left (\frac {\sqrt {i a \tan (c+d x)}}{\sqrt {a}}\right ) \sqrt {i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d \sqrt {1+i \tan (c+d x)} \sqrt {\tan (c+d x)}}\right ) \]

input
Integrate[((a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x] 
^(7/2),x]
 
output
(-2*A*(a + I*a*Tan[c + d*x])^(5/2))/(5*d*Tan[c + d*x]^(5/2)) + (I*A + B)*( 
((4*I)*Sqrt[2]*a^2*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*T 
an[c + d*x]]]*Sqrt[I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]) - ((4*I)*a^(5 
/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*Sqrt[1 + I*Tan[c + d*x]]*Sqrt[ 
I*a*Tan[c + d*x]])/(d*Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + (5* 
(-1)^(3/4)*a^2*ArcSinh[(-1)^(1/4)*Sqrt[Tan[c + d*x]]]*Sqrt[a + I*a*Tan[c + 
 d*x]])/(d*Sqrt[1 + I*Tan[c + d*x]]) - (2*a^2*Sqrt[a + I*a*Tan[c + d*x]])/ 
(3*d*Tan[c + d*x]^(3/2)) - (((14*I)/3)*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(d* 
Sqrt[Tan[c + d*x]]) - (I*a^(3/2)*ArcSinh[Sqrt[I*a*Tan[c + d*x]]/Sqrt[a]]*S 
qrt[I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(d*Sqrt[1 + I*Tan[c + d* 
x]]*Sqrt[Tan[c + d*x]]))
 
3.2.74.3 Rubi [A] (verified)

Time = 1.02 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.04, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {3042, 4076, 27, 3042, 4076, 27, 3042, 4081, 27, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan (c+d x)^{7/2}}dx\)

\(\Big \downarrow \) 4076

\(\displaystyle \frac {2}{5} \int \frac {(i \tan (c+d x) a+a)^{3/2} (a (8 i A+5 B)-a (2 A-5 i B) \tan (c+d x))}{2 \tan ^{\frac {5}{2}}(c+d x)}dx-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {(i \tan (c+d x) a+a)^{3/2} (a (8 i A+5 B)-a (2 A-5 i B) \tan (c+d x))}{\tan ^{\frac {5}{2}}(c+d x)}dx-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {(i \tan (c+d x) a+a)^{3/2} (a (8 i A+5 B)-a (2 A-5 i B) \tan (c+d x))}{\tan (c+d x)^{5/2}}dx-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4076

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int -\frac {\sqrt {i \tan (c+d x) a+a} \left ((38 A-35 i B) a^2+(22 i A+25 B) \tan (c+d x) a^2\right )}{2 \tan ^{\frac {3}{2}}(c+d x)}dx-\frac {2 a^2 (5 B+8 i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (-\frac {1}{3} \int \frac {\sqrt {i \tan (c+d x) a+a} \left ((38 A-35 i B) a^2+(22 i A+25 B) \tan (c+d x) a^2\right )}{\tan ^{\frac {3}{2}}(c+d x)}dx-\frac {2 a^2 (5 B+8 i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (-\frac {1}{3} \int \frac {\sqrt {i \tan (c+d x) a+a} \left ((38 A-35 i B) a^2+(22 i A+25 B) \tan (c+d x) a^2\right )}{\tan (c+d x)^{3/2}}dx-\frac {2 a^2 (5 B+8 i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4081

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {2 a^2 (38 A-35 i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {2 \int \frac {30 a^3 (i A+B) \sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{a}\right )-\frac {2 a^2 (5 B+8 i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {2 a^2 (38 A-35 i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-60 a^2 (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx\right )-\frac {2 a^2 (5 B+8 i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {2 a^2 (38 A-35 i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-60 a^2 (B+i A) \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx\right )-\frac {2 a^2 (5 B+8 i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 4027

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {120 i a^4 (B+i A) \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}+\frac {2 a^2 (38 A-35 i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}\right )-\frac {2 a^2 (5 B+8 i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {1}{5} \left (\frac {1}{3} \left (\frac {2 a^2 (38 A-35 i B) \sqrt {a+i a \tan (c+d x)}}{d \sqrt {\tan (c+d x)}}-\frac {(60-60 i) a^{5/2} (B+i A) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\right )-\frac {2 a^2 (5 B+8 i A) \sqrt {a+i a \tan (c+d x)}}{3 d \tan ^{\frac {3}{2}}(c+d x)}\right )-\frac {2 a A (a+i a \tan (c+d x))^{3/2}}{5 d \tan ^{\frac {5}{2}}(c+d x)}\)

input
Int[((a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]))/Tan[c + d*x]^(7/2) 
,x]
 
output
(-2*a*A*(a + I*a*Tan[c + d*x])^(3/2))/(5*d*Tan[c + d*x]^(5/2)) + ((-2*a^2* 
((8*I)*A + 5*B)*Sqrt[a + I*a*Tan[c + d*x]])/(3*d*Tan[c + d*x]^(3/2)) + ((( 
-60 + 60*I)*a^(5/2)*(I*A + B)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]]) 
/Sqrt[a + I*a*Tan[c + d*x]]])/d + (2*a^2*(38*A - (35*I)*B)*Sqrt[a + I*a*Ta 
n[c + d*x]])/(d*Sqrt[Tan[c + d*x]]))/3)/5
 

3.2.74.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4076
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-a^2)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n 
+ 1)/(d*f*(b*c + a*d)*(n + 1))), x] - Simp[a/(d*(b*c + a*d)*(n + 1))   Int[ 
(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n 
 - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m - 1) + b 
*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] 
 && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]
 

rule 4081
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*(n + 
1)*(c^2 + d^2))), x] - Simp[1/(a*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + 
f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c* 
m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x], x] /; Fr 
eeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 
0] && LtQ[n, -1]
 
3.2.74.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 706 vs. \(2 (152 ) = 304\).

Time = 0.14 (sec) , antiderivative size = 707, normalized size of antiderivative = 3.82

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (-76 A \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+60 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{3}\left (d x +c \right )\right )-15 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+70 i B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+60 B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{3}\left (d x +c \right )\right )+30 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{3}\left (d x +c \right )\right )-15 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+22 i A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )-30 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{3}\left (d x +c \right )\right )+10 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+6 A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{15 d \tan \left (d x +c \right )^{\frac {5}{2}} \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(707\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (-76 A \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+60 i A \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{3}\left (d x +c \right )\right )-15 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+70 i B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+60 B \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{3}\left (d x +c \right )\right )+30 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{3}\left (d x +c \right )\right )-15 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+22 i A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )-30 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{3}\left (d x +c \right )\right )+10 B \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+6 A \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{15 d \tan \left (d x +c \right )^{\frac {5}{2}} \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}\) \(707\)
parts \(\frac {A \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (15 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+15 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{3}\left (d x +c \right )\right )+60 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{3}\left (d x +c \right )\right )-22 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )+76 \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )-6 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{15 d \tan \left (d x +c \right )^{\frac {5}{2}} \sqrt {i a}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}}-\frac {B \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (3 i \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+12 i \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{2}\left (d x +c \right )\right )-3 \sqrt {i a}\, \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-i a +3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )+14 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{3 d \tan \left (d x +c \right )^{\frac {3}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(784\)

input
int((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x,method=_R 
ETURNVERBOSE)
 
output
-1/15/d*(a*(1+I*tan(d*x+c)))^(1/2)*a^2/tan(d*x+c)^(5/2)*(-76*A*(I*a)^(1/2) 
*(-I*a)^(1/2)*tan(d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+60*I*A*ln 
(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2) 
+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)^3-15*I*(I*a)^(1/2)*2^(1/2)*ln(( 
2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-I*a+3*a*tan(d 
*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3+70*I*B*(I*a)^(1/2)*(-I*a)^(1/2)*tan( 
d*x+c)^2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+60*B*ln(1/2*(2*I*a*tan(d*x+ 
c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I 
*a)^(1/2)*a*tan(d*x+c)^3+30*I*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+ 
I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c) 
^3-15*(I*a)^(1/2)*2^(1/2)*ln((2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*ta 
n(d*x+c)))^(1/2)-I*a+3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3+22*I*A 
*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2) 
-30*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a) 
^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*tan(d*x+c)^3+10*B*(I*a)^(1/2)*(-I*a) 
^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)+6*A*(I*a)^(1/2)*(- 
I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2))/(I*a)^(1/2)/(-I*a)^(1/2) 
/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)
 
3.2.74.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 608 vs. \(2 (141) = 282\).

Time = 0.27 (sec) , antiderivative size = 608, normalized size of antiderivative = 3.29 \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\frac {2 \, {\left (15 \, \sqrt {2} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{5}}{d^{2}}} {\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {{\left (\sqrt {2} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )} + \sqrt {2} {\left ({\left (-i \, A - B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-i \, A - B\right )} a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) - 15 \, \sqrt {2} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{5}}{d^{2}}} {\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (-\frac {{\left (\sqrt {2} \sqrt {-\frac {{\left (-i \, A^{2} - 2 \, A B + i \, B^{2}\right )} a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )} - \sqrt {2} {\left ({\left (-i \, A - B\right )} a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + {\left (-i \, A - B\right )} a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{{\left (-i \, A - B\right )} a^{2}}\right ) - 2 \, \sqrt {2} {\left (2 \, {\left (-13 i \, A - 10 \, B\right )} a^{2} e^{\left (7 i \, d x + 7 i \, c\right )} + 3 \, {\left (3 i \, A + 5 \, B\right )} a^{2} e^{\left (5 i \, d x + 5 i \, c\right )} + 20 \, {\left (i \, A + B\right )} a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} + 15 \, {\left (-i \, A - B\right )} a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )}}{15 \, {\left (d e^{\left (6 i \, d x + 6 i \, c\right )} - 3 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 3 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, al 
gorithm="fricas")
 
output
2/15*(15*sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*(d*e^(6*I*d*x + 6 
*I*c) - 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2 
)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*d*e^(I*d*x + I*c) + sqrt(2)*((-I 
*A - B)*a^2*e^(2*I*d*x + 2*I*c) + (-I*A - B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I 
*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))*e^ 
(-I*d*x - I*c)/((-I*A - B)*a^2)) - 15*sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^ 
2)*a^5/d^2)*(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*d*x + 4*I*c) + 3*d*e^(2*I* 
d*x + 2*I*c) - d)*log(-(sqrt(2)*sqrt(-(-I*A^2 - 2*A*B + I*B^2)*a^5/d^2)*d* 
e^(I*d*x + I*c) - sqrt(2)*((-I*A - B)*a^2*e^(2*I*d*x + 2*I*c) + (-I*A - B) 
*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/ 
(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/((-I*A - B)*a^2)) - 2*sqrt(2) 
*(2*(-13*I*A - 10*B)*a^2*e^(7*I*d*x + 7*I*c) + 3*(3*I*A + 5*B)*a^2*e^(5*I* 
d*x + 5*I*c) + 20*(I*A + B)*a^2*e^(3*I*d*x + 3*I*c) + 15*(-I*A - B)*a^2*e^ 
(I*d*x + I*c))*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I 
*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)))/(d*e^(6*I*d*x + 6*I*c) - 3*d*e^(4*I*d 
*x + 4*I*c) + 3*d*e^(2*I*d*x + 2*I*c) - d)
 
3.2.74.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+I*a*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)**(7/2),x)
 
output
Timed out
 
3.2.74.7 Maxima [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, al 
gorithm="maxima")
 
output
Timed out
 
3.2.74.8 Giac [F(-2)]

Exception generated. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\text {Exception raised: TypeError} \]

input
integrate((a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c))/tan(d*x+c)^(7/2),x, al 
gorithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Non regular value [0] was discarded 
 and replaced randomly by 0=[-41]Warning, replacing -41 by -23, a substitu 
tion vari
 
3.2.74.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x))}{\tan ^{\frac {7}{2}}(c+d x)} \, dx=\int \frac {\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{7/2}} \,d x \]

input
int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2))/tan(c + d*x)^(7/2 
),x)
 
output
int(((A + B*tan(c + d*x))*(a + a*tan(c + d*x)*1i)^(5/2))/tan(c + d*x)^(7/2 
), x)